Seventh Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Qesign of Presstrssed Concrete Structires

Time: 3 hrs.
Max. Marks: 100
Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of $I S: 1343-1980$ is permitted.

PART - A

1 a. Explain the necessity of using high strength concrete and high tensile steel in prestressed concrete structures.
(08 Marks)
b. Distinguish between pretencioing and port tensioning. (06 Marks)
c. Explain with neat sketches, Freyssinet system of pre-siressing.
(06 Marks)
2 a. Explain the concept of load balancing with different cable profiles. (06 Marks)
b. A rectangular concrete beam, 100 mm wide by 250 mm deep spanning over 8 m is prestressed by a straight cable carrying an effective pre-stressing force of 250 kN located at an eccentricity of 40 mm . The beam supports a live !oad $1.2 \mathrm{kN} / \mathrm{m}$.
i) Calculate the resultant stress distribution for the central cross section of the beam. The density of concrete is $24 \mathrm{k} \mathrm{N} / \mathrm{m}^{3}$
ii) Find the magnitude of prestressing force with an eccentricity of 40 mm which can balance the stresses due to dead and live loads at the bottom fibre of the central section of the beam.
(1+ Marks)

3 a. List the various types of losses in PSC beams and write the equations used to determine them.
(06 Marks)
b. A pretensioned beam, 200 mm wide and 300 mm deep is prestresses by 10 wires of 7 mm diameter, initially stressed to $1200 \mathrm{~N} / \mathrm{mm}^{2}$, with their centroids located 100 mm from the soffit. Find the maximum stress in concrete immediately after transfer, allowing only for elastic shortening of conerete.
If the concrete undergoes a further shortening due to creep and shrinkage, while there is a relaxation of five percent of steel stress, estimate the final percentage loss of stress in the wires using IS: 1343 regulations. Use following data: $E_{s}=210 \mathrm{kN} / \mathrm{mm}^{2} ; \mathrm{E}_{\mathrm{c}}=5700 \sqrt{\mathrm{f}_{\mathrm{ch}}}$. $\mathrm{f}_{\mathrm{ck}}=42 \mathrm{~N} / \mathrm{mm}^{2}$. Creep coefficient is 1.6 and total residual shrinkage strain is $3 \times 10^{+}$.
(14 Marks)

4 a. List the factors influencing deflections.
(04 Marks)
Obtain an expression for computing deflection at midspan in a PSC beam with trapezoidal tendotis with eccentricity ' e " at mid third points. with linear variation towards support. The Mohr's theorem.
(04 Marks)
A concrete beam having rectangular section 100 mm wide and 300 mm deep is prestressed bya parabolic cable carrying an initial force of 240 kN . The cable has an eccentricity of 50 mm at the centre of span and is concentric at the supports. If the span of the beam is 10 m and live load is $2 \mathrm{kN} / \mathrm{m}$. estimate short term deflection at the centre of span. Assuming $\mathrm{E}=38 \mathrm{kN} / \mathrm{mm}^{2}$ and creep coefficient $\phi=2.0$, loss of prestress is 20 percent of the initial stress after 6 months. Estimate the long terms defection at the centre of span at this stage, assuming that the dead and live loads are simultaneously applied after the release of prestress.
(12 Marks)

For More Question Papers Visit - www.pediawikiblog.com

PART-B

5 a. Explain with sketches, the different types of flexural failures in PSC beam.
(06 Marks)
b. A post tensioned beam with unbounded tendons is of rectangular seci!on 400 mm wide with an effective depth of 800 mm . The cross sectional area of the pre-stressing steel is $2840 \mathrm{~mm}^{2}$. The effective pre-stress in steel after all losses is $900 \mathrm{~N} / \mathrm{mm}^{2}$. The effective span of the beam is 16 m . If $\mathrm{f}_{\mathrm{ck}}=40 \mathrm{~N} / \mathrm{mm}^{2}$, estimate the ultimate moment of resistance of the section using IS : 1343.
(07 Marks)
c. A post tensioned pre-stressed concrete T-beam with unbounded tendons is made up of a flange 300 mm wide and 150 m thick and the width of the rib is 150 mm . The effective depth of the section is 320 mm . The beam is pre-stressed by 24 wires of 5 mm diameter having a characteristic strength of $1650 \mathrm{~N} / \mathrm{mm}^{2}$. The effective stress after all losses is $900 \mathrm{~N} / \mathrm{mm}^{2}$. If the cube strength of concrete is $56 \mathrm{~N} / \mathrm{mm}^{2}$. Fistimate the flexural strength of the section using IS:1343-1980. Assume $\left(\frac{L}{\delta}\right)$ ration as 20 .
(07 Marks)

6 a. Explain the types of shear cracks in structiral concrete. (06 Marks)
b. A concrete beam of rectangular section 200 mm wide and 650 mm deep is prestressed by a parabolic cable located at an eccentricity of 120 mm at midspan and zero at the supports. If the beam has a span of 12 m and carries a uniformly distributed live load of $4.5 \mathrm{kN} / \mathrm{m}$. find the effective force necessary in the cable for zer. shear stress at the support section. For this condition. calculate the principal stresses. The density of concrete is $25 \mathrm{KN} / \mathrm{m}^{3}$. ($1+$ Marks)

7 a. Explain the concept of stress distribution in End block.
(08 Marks)
b. The end block of a post tensioned beam is 300 mm wide and 400 mm deep. Ten cables each made up of 12 wires of 5 mm diameter strands are stressed to $1200 \mathrm{~N} / \mathrm{mm}^{2}$. The wires are located at constant eccentricity of 100 mm below the centroidat axis. Design the end block and detail the reinforcement. If the anchorage plate is $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ and diameter of the duct is 100 mm , permissible stress in concrete at transfer is $20 \mathrm{~N} / \mathrm{mm}^{2}$. permissible shear stress in steel is $94.5 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the thickness of anchorage pate.
(12 Marks)
8 A prestressed beam has an unsymmetrical I-section with an overali depth of 1840 mm . The top and bottom flange withs are 1800 and 820 mm respectively. The thickness of the top flange varies from 180 mm at the ends to 430 mm at the junction of web, which is 1800 mm thick. The thickness of the bottom flange varies from 150 mm at the ends tc 450 mm at the junction of the web. The beam is designed for a simply supported span of 40 m . the permissible compressive stress at the transfer and working load is limited to $10 \mathrm{~N} / \mathrm{mm}^{2}$. While the tensile stress at the transfer and working load is limited to rero and $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. respectively. The loss ratio is 0.80 calculate :
a. The permissible uniformly distributed imposed load
b. The magnitude of the prestressed face if at the mid-span section if is located 130 mm from the soffit and
c. The vertical limits within which the cable must is at midspan and support sections.
(20 Marks)

